Posted by : Batang Thai วันอาทิตย์ที่ 3 สิงหาคม พ.ศ. 2557



How Laser Printers Work




The term inkjet printer is very descriptive of the process at work -- these printers put an image on paper using tiny jets of ink. The term laser printer, on the other hand, is a bit more mysterious -- how can a laser beam, a highly focused beam of light, write letters and draw pictures on paper?

Many people use laser printers in their day-to-day lives, but most probably never think about the technology that turns those bits of digital data into a legible images and text. Very few of us ever consider the drum, the fuser the data exchange or the static electricity that all come together to print our memos.

In this article, we'll unravel the mystery behind the laser printer, tracing a page's path from the characters on your computer screen to printed letters on paper. As it turns out, the laser printing process is based on some very basic scientific principles applied in an exceptionally innovative way.

The Basics: Static Electricity
The primary principle at work in a laser printer is static electricity, the same energy that makes clothes in the dryer stick together or a lightning bolt travel from a thundercloud to the ground. Static electricity is simply an electrical charge built up on an insulated object, such as a balloon or your body. Since oppositely charged atoms are attracted to each other, objects with opposite static electricity fields cling together.

A laser printer uses this phenomenon as a sort of "temporary glue." The core component of this system is the photoreceptor, typically a revolving drum or cylinder. 

This drum assembly is made out of highly photoconductive material that is discharged by light photons.

The Basics: Drum
Initially, the drum is given a total positive charge by the charge corona wire, a wire with an electrical current running through it. (Some printers use a charged roller instead of a corona wire, but the principle is the same.) As the drum revolves, the printer shines a tiny laser beam across the surface to discharge certain points. In this way, the laser "draws" the letters and images to be printed as a pattern of electrical charges -- an electrostatic image. The system can also work with the charges reversed -- that is, a positive electrostatic image on a negative background.

After the pattern is set, the printer coats the drum with positively charged toner -- a fine, black powder. Since it has a positive charge, the toner clings to the negative discharged areas of the drum, but not to the positively charged "background." This is something like writing on a soda can with glue and then rolling it over some flour: The flour only sticks to the glue-coated part of the can, so you end up with a message written in powder.

With the powder pattern affixed, the drum rolls over a sheet of paper, which is moving along a belt below. Before the paper rolls under the drum, it is given a negative charge by the transfer corona wire (charged roller). This charge is stronger than the negative charge of the electrostatic image, so the paper can pull the toner powder away. Since it is moving at the same speed as the drum, the paper picks up the image pattern exactly. To keep the paper from clinging to the drum, it is discharged by the detac corona wire immediately after picking up the toner.

The Basics: Fuser
Finally, the printer passes the paper through the fuser, a pair of heated rollers. As the paper passes through these rollers, the loose toner powder melts, fusing with the fibers in the paper. The fuser rolls the paper to the output tray, and you have your finished page. The fuser also heats up the paper itself, of course, which is why pages are always hot when they come out of a laser printer or photocopier.

So what keeps the paper from burning up? Mainly, speed -- the paper passes through the rollers so quickly that it doesn't get very hot.

After depositing toner on the paper, the drum surface passes the discharge lamp. This bright light exposes the entire photoreceptor surface, erasing the electrical image. The drum surface then passes the charge corona wire, which reapplies the positive charge.

Conceptually, this is all there is to it. Of course, actually bringing everything together is a lot more complex. In the following sections, we'll examine the different components in greater detail to see how they produce text and images so quickly and precisely.


The Controller: The Conversation
Before a laser printer can do anything else, it needs to receive the page data and figure out how it's going to put everything on the paper. This is the job of the printer controller.

The printer controller is the laser printer's main onboard computer. It talks to the host computer (for example, your PC) through a communications port, such as a parallel port or USB port. At the start of the printing job, the laser printer establishes with the host computer how they will exchange data. The controller may have to start and stop the host computer periodically to process the information it has received.

In an office, a laser printer will probably be connected to several separate host computers, so multiple users can print documents from their machine. The controller handles each one separately, but may be carrying on many "conversations" concurrently. This ability to handle several jobs at once is one of the reasons why laser printers are so popular.

The Controller: The Language
For the printer controller and the host computer to communicate, they need to speak the same page description language. In earlier printers, the computer sent a special sort of text file and a simple code giving the printer some basic formatting information. Since these early printers had only a few fonts, this was a very straightforward process.

These days, you might have hundreds of different fonts to choose from, and you wouldn't think twice about printing a complex graphic. To handle all of this diverse information, the printer needs to speak a more advanced language.

The primary printer languages these days are Hewlett Packard's Printer Command Language (PCL) and Adobe's Postscript. Both of these languages describe the page in vector form -- that is, as mathematical values of geometric shapes, rather than as a series of dots (a bitmap image). The printer itself takes the vector images and converts them into a bitmap page. With this system, the printer can receive elaborate, complex pages, featuring any sort of font or image. Also, since the printer creates the bitmap image itself, it can use its maximum printer resolution.

Some printers use a graphical device interface (GDI) format instead of a standard PCL. In this system, the host computer creates the dot array itself, so the controller doesn't have to process anything -- it just sends the dot instructions on to the laser.

But in most laser printers, the controller must organize all of the data it receives from the host computer. This includes all of the commands that tell the printer what to do -- what paper to use, how to format the page, how to handle the font, etc. For the controller to work with this data, it has to get it in the right order.

The Controller: Setting up the Page
Once the data is structured, the controller begins putting the page together. It sets the text margins, arranges the words and places any graphics. When the page is arranged, the raster image processor (RIP) takes the page data, either as a whole or piece by piece, and breaks it down into an array of tiny dots. As we'll see in the next section, the printer needs the page in this form so the laser can write it out on the photoreceptor drum.

In most laser printers, the controller saves all print-job data in its own memory. This lets the controller put different printing jobs into a queue so it can work through them one at a time. It also saves time when printing multiple copies of a document, since the host computer only has to send the data once.

The Laser Assembly
Since it actually draws the page, the printer's laser system -- or laser scanning assembly -- must be incredibly precise. The traditional laser scanning assembly includes:
- A laser
- A movable mirror
- A lens
The laser receives the page data -- the tiny dots that make up the text and images -- one horizontal line at a time. As the beam moves across the drum, the laser emits a pulse of light for every dot to be printed, and no pulse for every dot of empty space.

The laser doesn't actually move the beam itself. It bounces the beam off a movable mirror instead. As the mirror moves, it shines the beam through a series of lenses. This system compensates for the image distortion caused by the varying distance between the mirror and points along the drum.

Writing the Page
The laser assembly moves in only one plane, horizontally. After each horizontal scan, the printer moves the photoreceptor drum up a notch so the laser assembly can draw the next line. A small print-engine computer synchronizes all of this perfectly, even at dizzying speeds.

Some laser printers use a strip of light emitting diodes (LEDs) to write the page image, instead of a single laser. Each dot position has its own dedicated light, which means the printer has one set print resolution. These systems cost less to manufacture than true laser assemblies, but they produce inferior results. Typically, you'll only find them in less expensive printers.

Laser printers work the same basic way as photocopiers, with a few significant differences. The most obvious difference is the source of the image: A photocopier scans an image by reflecting a bright light off of it, while a laser printer receives the image in digital form.

Another major difference is how the electrostatic image is created. When a photocopier bounces light off a piece of paper, the light reflects back onto the photoreceptor from the white areas but is absorbed by the dark areas. In this process, the "background" is discharged, while the electrostatic image retains a positive charge. This method is called "write-white."
In most laser printers, the process is reversed: The laser discharges the lines of the electrostatic image and leaves the background positively charged. In a printer, this "write-black" system is easier to implement than a "write-white" system, and it generally produces better results.



Leave a Reply

Subscribe to Posts | Subscribe to Comments

Search

Popular Post

Brother Lasher Printer Categories

Brother Laser Printer Price

Brother Laser Printer Color

ขับเคลื่อนโดย Blogger.

- Copyright © Brother Laser Printer -Metrominimalist- Powered by Blogger - Designed by Johanes Djogan -